Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Curr Opin Neurol ; 36(3): 198-206, 2023 06 01.
Article in English | MEDLINE | ID: covidwho-2301461

ABSTRACT

PURPOSE OF THE REVIEW: Persistent infections capable of causing central nervous system (CNS) complications months or years after the initial infection represent a major public health concern. This concern is particularly relevant considering the ongoing coronavirus disease 2019 pandemic, where the long-term neurological effects are still being recognized. RECENT FINDINGS: Viral infections are a risk factor for the development of neurodegenerative diseases. In this paper, we provide an in-depth exploration of the prevalent known and suspected persistent pathogens and their epidemiological and mechanistic links to later development of CNS disease. We examine the pathogenic mechanisms involved, including direct viral damage and indirect immune dysregulation, while also addressing the challenges associated with detecting persistent pathogens. SUMMARY: Viral encephalitis has been closely associated with the later development of neurodegenerative diseases and persistent viral infections of the CNS can result in severe and debilitating symptoms. Further, persistent infections may result in the development of autoreactive lymphocytes and autoimmune mediated tissue damage. Diagnosis of persistent viral infections of the CNS remains challenging and treatment options are limited. The development of additional testing modalities as well as novel antiviral agents and vaccines against these persistent infections remains a crucial research goal.


Subject(s)
COVID-19 , Central Nervous System Diseases , Virus Diseases , Humans , Persistent Infection , COVID-19/complications , Virus Diseases/complications
2.
Curr Microbiol ; 80(6): 195, 2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2294094

ABSTRACT

Chronic inflammatory gastrointestinal diseases such as Crohn's disease (CD) and ulcerative colitis (UC) are known as inflammatory bowel disorders (IBD). Patients with inflammatory bowel illnesses are more susceptible to viral infections. In people with IBD, viral infections have emerged as a significant issue. Viral infections are often difficult to identify and have a high morbidity and fatality rate. We reviewed studies on viral infections and IBD, concentrating on Cytomegalovirus (CMV), SARS-CoV-2, Epstein-Barr virus (EBV), enteric viruses, and hepatitis B virus (HBV). Also, the effect of IBD on these viral infections is discussed. These data suggest that patients with IBD are more likely to get viral infections. As a result, practitioners should be aware of the increased risk of viral infections in inflammatory bowel disease patients.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Inflammatory Bowel Diseases , Virus Diseases , Humans , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , SARS-CoV-2 , Inflammatory Bowel Diseases/complications , Virus Diseases/complications
3.
Prion ; 17(1): 82-104, 2023 12.
Article in English | MEDLINE | ID: covidwho-2262012

ABSTRACT

The crosstalk between viral infections, amyloid formation and neurodegeneration has been discussed with varying intensity since the last century. Several viral proteins are known to be amyloidogenic. Post-acute sequalae (PAS) of viral infections is known for several viruses. SARS-CoV-2 and COVID-19 implicate connections between amyloid formation and severe outcomes in the acute infection, PAS and neurodegenerative diseases. Is the amyloid connection causation or just correlation? In this review we highlight several aspects where amyloids and viruses meet. The evolutionary driving forces that dictate protein amyloid formation propensity are different for viruses compared to prokaryotes and eukaryotes, while posttranslational endoproteolysis appears to be a common mechanism leading up to amyloid formation for both viral and human proteins. Not only do human and viral proteins form amyloid irrespective of each other but there are also several examples of co-operativity between amyloids, viruses and the inter-, and intra-host spread of the respective entity. Abnormal blood clotting in severe and long COVID and as a side effect in some vaccine recipients has been connected to amyloid formation of both the human fibrin and the viral Spike-protein. We conclude that there are many intersects between viruses and amyloids and, consequently, amyloid and virus research need to join forces here. We emphasize the need to accelerate development and implementation in clinical practice of antiviral drugs to preclude PAS and downstream neurological damage. There is also an ample need for retake on suitable antigen targets for the further development of next generation of vaccines against the current and coming pandemics.


Subject(s)
COVID-19 , Virus Diseases , Viruses , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , Virus Diseases/complications , Amyloid , Viral Proteins
4.
Viruses ; 15(3)2023 03 18.
Article in English | MEDLINE | ID: covidwho-2283019

ABSTRACT

Autoimmune diseases (AIDs) are the consequence of a breach in immune tolerance, leading to the inability to sufficiently differentiate between self and non-self. Immune reactions that are targeted towards self-antigens can ultimately lead to the destruction of the host's cells and the development of autoimmune diseases. Although autoimmune disorders are comparatively rare, the worldwide incidence and prevalence is increasing, and they have major adverse implications for mortality and morbidity. Genetic and environmental factors are thought to be the major factors contributing to the development of autoimmunity. Viral infections are one of the environmental triggers that can lead to autoimmunity. Current research suggests that several mechanisms, such as molecular mimicry, epitope spreading, and bystander activation, can cause viral-induced autoimmunity. Here we describe the latest insights into the pathomechanisms of viral-induced autoimmune diseases and discuss recent findings on COVID-19 infections and the development of AIDs.


Subject(s)
Autoimmune Diseases , COVID-19 , Virus Diseases , Humans , COVID-19/complications , Autoimmune Diseases/epidemiology , Autoimmune Diseases/genetics , Virus Diseases/complications , Virus Diseases/epidemiology , Autoimmunity , Autoantigens
5.
Int J Mol Sci ; 23(19)2022 Oct 10.
Article in English | MEDLINE | ID: covidwho-2271198

ABSTRACT

While most viral infections cause mild symptoms and a spontaneous favorable resolution, some can lead to severe or protracted manifestations, specifically in immunocompromised hosts. Kidney injuries related to viral infections may have multiple causes related to the infection severity, drug toxicity or direct or indirect viral-associated nephropathy. We review here the described virus-associated nephropathies in order to guide diagnosis strategies and treatments in cases of acute kidney injury (AKI) occurring concomitantly with a viral infection. The occurrence of virus-associated nephropathy depends on multiple factors: the local epidemiology of the virus, its ability to infect renal cells and the patient's underlying immune response, which varies with the state of immunosuppression. Clear comprehension of pathophysiological mechanisms associated with a summary of described direct and indirect injuries should help physicians to diagnose and treat viral associated nephropathies.


Subject(s)
Acute Kidney Injury , Kidney Transplantation , Virus Diseases , Acute Kidney Injury/etiology , Humans , Immunosuppression Therapy , Kidney , Virus Diseases/complications
6.
Curr Microbiol ; 80(1): 15, 2022 Dec 02.
Article in English | MEDLINE | ID: covidwho-2245017

ABSTRACT

Multiple sclerosis (MS) is a chronic autoimmune disease that affects the central nervous system (CNS). Compared to other types of self-limiting myelin disorders, MS compartmentalizes and maintains chronic inflammation in the CNS. Even though the exact cause of MS is unclear, it is assumed that genetic and environmental factors play an important role in susceptibility to this disease. The progression of MS is triggered by certain environmental factors, such as viral infections. The most important viruses that affect MS are Epstein-Barr virus (EBV), human herpes virus 6 (HHV-6), human endogenous retrovirus (HERV), cytomegalovirus (CMV), and varicella zoster virus (VZV). These viruses all have latent stages that allow them to escape immune detection and reactivate after exposure to various stimuli. Furthermore, their tropism for CNS and immune system cells explains their possible deleterious function in neuroinflammation. In this study, the effect of viral infections on MS disease focuses on the details of viruses that can change the risk of the disease. Paying attention to the most recent articles on the role of SARS-CoV-2 in MS disease, laboratory indicators show the interaction of the immune system with the virus. Also, strategies to prevent viruses that play a role in triggering MS are discussed, such as EBV, which is one of the most important.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Multiple Sclerosis , Virus Diseases , Humans , Multiple Sclerosis/etiology , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , SARS-CoV-2 , Virus Diseases/complications
7.
Trends Mol Med ; 28(12): 1112-1127, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2243255

ABSTRACT

Asthma exacerbations significantly impact millions of patients worldwide to pose large disease burdens on affected patients, families, and health-care systems. Although numerous environmental factors cause asthma exacerbations, viral respiratory infections are the principal triggers. Advances in the pathophysiology of asthma have elucidated dysregulated protective immune responses and upregulated inflammation that create susceptibility and risks for exacerbation. Biologics for the treatment of severe asthma reduce rates of exacerbations and identify specific pathways of inflammation that contribute to altered pathophysiology, novel therapeutic targets, and informative biomarkers. Major steps to prevent exacerbations include the identification of molecular pathways whose blockage will prevent asthma attacks safely, predictably, and effectively.


Subject(s)
Asthma , Picornaviridae Infections , Virus Diseases , Humans , Rhinovirus/physiology , Asthma/therapy , Asthma/drug therapy , Inflammation , Virus Diseases/complications
8.
Influenza Other Respir Viruses ; 16(4): 780-788, 2022 07.
Article in English | MEDLINE | ID: covidwho-2052612

ABSTRACT

BACKGROUND: Influenza causes significant morbidity and mortality in the United States. Among patients infected with influenza, the presence of bacterial co-infection is associated with worse clinical outcomes; less is known regarding the clinical importance of viral co-infections. The objective of this study was to determine rates of viral co-infections in emergency department (ED) patients with confirmed influenza and association of co-infection with disease severity. METHODS: Secondary analysis of a biorepository and clinical database from a parent study where rapid influenza testing was implemented in four U.S. academic EDs, during the 2014-2015 influenza season. Patients were systematically tested for influenza virus using a validated clinical decision guideline. Demographic and clinical data were extracted from medical records; nasopharyngeal specimens from influenza-positive patients were tested for viral co-infections (ePlex, Genmark Diagnostics). Patterns of viral co-infections were evaluated using chi-square analysis. The association of viral co-infection with hospital admission was assessed using univariate and multivariate regression. RESULTS: The overall influenza A/B positivity rate was 18.1% (1071/5919). Of the 999 samples with ePlex results, the prevalence of viral co-infections was 7.9% (79/999). The most common viral co-infection was rhinovirus/enterovirus (RhV/EV), at 3.9% (39/999). The odds of hospital admission (OR 2.33, 95% CI: 1.01-5.34) increased significantly for those with viral co-infections (other than RhV/EV) versus those with influenza A infection only. CONCLUSION: Presence of viral co-infection (other than RhV/EV) in ED influenza A/B positive patients was independently associated with increased risk of hospital admission. Further research is needed to determine clinical utility of ED multiplex testing.


Subject(s)
Coinfection , Influenza, Human , Orthomyxoviridae , Respiratory Tract Infections , Virus Diseases , Viruses , Coinfection/epidemiology , Hospitalization , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Respiratory Tract Infections/epidemiology , Virus Diseases/complications , Virus Diseases/epidemiology
9.
Int J Mol Sci ; 23(17)2022 Aug 31.
Article in English | MEDLINE | ID: covidwho-2023752

ABSTRACT

Viral respiratory tract infections are associated with asthma development and exacerbation in children and adults. In the course of immune responses to viruses, airway epithelial cells are the initial platform of innate immunity against viral invasion. Patients with severe asthma are more vulnerable than those with mild to moderate asthma to viral infections. Furthermore, in most cases, asthmatic patients tend to produce lower levels of antiviral cytokines than healthy subjects, such as interferons produced from immune effector cells and airway epithelial cells. The epithelial inflammasome appears to contribute to asthma exacerbation through overactivation, leading to self-damage, despite its naturally protective role against infectious pathogens. Given the mixed and complex immune responses in viral-infection-induced asthma exacerbation, this review examines the diverse roles of airway epithelial immunity and related potential therapeutic targets and discusses the mechanisms underlying the heterogeneous manifestations of asthma exacerbations.


Subject(s)
Asthma , Virus Diseases , Child , Cytokines , Humans , Immunity, Innate , Interferons , Virus Diseases/complications
10.
J Paediatr Child Health ; 58(10): 1741-1746, 2022 10.
Article in English | MEDLINE | ID: covidwho-2019512

ABSTRACT

Globally, respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and pneumonia in young children, and the association between severe RSV disease and later recurrent wheeze and asthma is well established. Whilst a causal link between RSV and wheeze/asthma is not yet proven, immunological evidence suggests skewing towards a Th2-type response, and dampening of IFN-γ antiviral immunity during RSV infection underpins airway hyper-reactivity in a subset of susceptible children after RSV infection. Age at primary RSV infection, viral co-infection and genetic influences may act as effect-modifiers. Despite the significant morbidity and mortality burden of RSV disease in children, there is currently no licensed vaccine. Recent advancements in RSV preventatives, including long-acting monoclonal antibodies and maternal vaccinations, show significant promise and we are on the cusp of a new era in RSV prevention. However, the potential impact of RSV preventatives on subsequent wheeze and asthma remains unclear. The ongoing COVID-19 pandemic and associated public health measures have disrupted the usual seasonality of RSV. Whilst this has posed challenges for health-care services it has also enhanced our understanding of RSV transmission. The near absence of RSV cases during the first year of the pandemic in the context of strict public health measures has provided a rare opportunity to study the impact of delayed age of primary RSV infection on asthma prevalence. In this review, we summarise current understanding of the association between RSV, recurrent wheeze and asthma with a focus on pathophysiology, preventative strategies and future research priorities.


Subject(s)
Asthma , COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Virus Diseases , Antibodies, Monoclonal , Antiviral Agents/therapeutic use , Asthma/epidemiology , Asthma/etiology , Asthma/prevention & control , Child , Child, Preschool , Humans , Infant , Pandemics , Respiratory Sounds/etiology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Virus Diseases/complications
11.
Obstet Gynecol ; 140(3): 514-517, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1985133

ABSTRACT

BACKGROUND: Nonsexually acquired genital ulcers have been described among girls who are prepubertal after various viral illnesses due to mucosal inflammation from an immunologic response. Until recently, nonsexually acquired genital ulcers have only been associated with viral infections. CASE: We present a case of an adolescent girl developing nonsexually acquired genital ulcers after both her first and second coronavirus disease 2019 (COVID-19) vaccine doses. Her course followed an expected timeline for severity and resolution of ulcers. CONCLUSIONS: Aphthous ulcers may arise from inflammatory effects of COVID-19 vaccination. Clinical monitoring after COVID-19 vaccination from all formulations should include assessment for nonsexually acquired genital ulcers if vaginal pain is reported.


Subject(s)
COVID-19 Vaccines , COVID-19 , Stomatitis, Aphthous , Virus Diseases , Vulvar Diseases , Adolescent , Female , Humans , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Stomatitis, Aphthous/complications , Ulcer/diagnosis , Ulcer/etiology , Vaccination , Virus Diseases/complications , Vulvar Diseases/complications
12.
Int Rev Neurobiol ; 165: 1-16, 2022.
Article in English | MEDLINE | ID: covidwho-1982432

ABSTRACT

There are several known causes of secondary parkinsonism, the most common being head trauma, stroke, medications, or infections. A growing body of evidence suggests that viral agents may trigger parkinsonian symptoms, but the exact pathological mechanisms are still unknown. In some cases, lesions or inflammatory processes in the basal ganglia or substantia nigra have been found to cause reversible or permanent impairment of the dopaminergic pathway, leading to the occurrence of extrapyramidal symptoms. This chapter reviews current data regarding the viral agents commonly associated with parkinsonism, such as Epstein Barr virus (EBV), hepatitis viruses, human immunodeficiency virus (HIV), herpes viruses, influenza virus, coxsackie virus, and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). We present possible risk factors, proposed pathophysiology mechanisms, published case reports, common associations, and prognosis in order to offer a concise overview of the viral spectrum involved in parkinsonism.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Parkinsonian Disorders , Virus Diseases , COVID-19/complications , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/diagnosis , Herpesvirus 4, Human , Humans , SARS-CoV-2 , Virus Diseases/complications
13.
Turk J Pediatr ; 64(3): 549-557, 2022.
Article in English | MEDLINE | ID: covidwho-1975713

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is a degenerative disease distinguished by progressive epithelial secretory gland dysfunction associated with recurrent respiratory tract infections. Despite that bacteria have previously been studied as the main cause of CF airway damage, a strong effect of respiratory viral infections is also now recognized. We aimed to detect the relationship between viral infection and exacerbation in children with cystic fibrosis. METHODS: This is a cross sectional observational study recruiting 60 patients diagnosed as CF following in Cystic Fibrosis Clinic, Children`s Hospital, Cairo University, throughout a period of 7 months. Their age ranged from 6 months to 13 years. Patients had nasal swabs and sputum samples obtained when they developed respiratory exacerbations. Multiplex PCR (polymerase chain reaction) technique was used to detect respiratory viruses from nasal swabs. RESULTS: We detected viruses in 48 patients during exacerbation (80%), the most common virus was rhinovirus in 43.4% of patients, followed by bocavirus in 20%, adenovirus in 13.3%, enterovirus in 10% and human metapneumovirus in 6.7%. Co-infection with double viruses was detected in 10 patients. Bacterial infection was present in 56.7% of patients; the most common organism was Pseudomonas in 20% of patients, followed by Staphylococcus aureus, methicillin resistant Staphylococcus aureus, Klebsiella and Haemophilus influenzae. CRP was positive in 53.3% of patients. There was a significant relationship between sputum positive bacterial culture and each of influenza A virus, enterovirus and human metapneumovirus. CONCLUSIONS: This study demonstrated that exacerbation in cystic fibrosis may be exaggerated by viral infections such as influenza A and enterovirus necessitating hospitalization which shows the important protective role of vaccination. Also, a strong relationship was detected between some viruses such as enterovirus, human metapneumovirus and influenza and between bacterial infection.


Subject(s)
Bacterial Infections , Cystic Fibrosis , Influenza, Human , Methicillin-Resistant Staphylococcus aureus , Respiratory Tract Infections , Virus Diseases , Viruses , Bacteria , Bacterial Infections/complications , Bacterial Infections/epidemiology , Child , Cross-Sectional Studies , Cystic Fibrosis/complications , Humans , Infant , Influenza, Human/complications , Influenza, Human/diagnosis , Prospective Studies , Respiratory Tract Infections/complications , Respiratory Tract Infections/epidemiology , Virus Diseases/complications , Virus Diseases/epidemiology
14.
Sci Immunol ; 7(73): eabm7996, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1949936

ABSTRACT

The acute effects of various respiratory viral infections have been well studied, with extensive characterization of the clinical presentation as well as viral pathogenesis and host responses. However, over the course of the recent COVID-19 pandemic, the incidence and prevalence of chronic sequelae after acute viral infections have become increasingly appreciated as a serious health concern. Post-acute sequelae of COVID-19, alternatively described as "long COVID-19," are characterized by symptoms that persist for longer than 28 days after recovery from acute illness. Although there exists substantial heterogeneity in the nature of the observed sequelae, this phenomenon has also been observed in the context of other respiratory viral infections including influenza virus, respiratory syncytial virus, rhinovirus, severe acute respiratory syndrome coronavirus, and Middle Eastern respiratory syndrome coronavirus. In this Review, we discuss the various sequelae observed following important human respiratory viral pathogens and our current understanding of the immunological mechanisms underlying the failure of restoration of homeostasis in the lung.


Subject(s)
COVID-19 , Respiratory Tract Infections , Virus Diseases , COVID-19/complications , COVID-19/immunology , Coronavirus , Humans , Pandemics , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , Virus Diseases/complications , Virus Diseases/immunology , Post-Acute COVID-19 Syndrome
15.
BMJ Open ; 12(6): e057957, 2022 06 21.
Article in English | MEDLINE | ID: covidwho-1902001

ABSTRACT

OBJECTIVE: To identify aetiologies of childhood community-acquired pneumonia (CAP) based on a comprehensive diagnostic approach. DESIGN: 'Partnerships for Enhanced Engagement in Research-Pneumonia in Paediatrics (PEER-PePPeS)' study was an observational prospective cohort study conducted from July 2017 to September 2019. SETTING: Government referral teaching hospitals and satellite sites in three cities in Indonesia: Semarang, Yogyakarta and Tangerang. PARTICIPANTS: Hospitalised children aged 2-59 months who met the criteria for pneumonia were eligible. Children were excluded if they had been hospitalised for >24 hours; had malignancy or history of malignancy; a history of long-term (>2 months) steroid therapy, or conditions that might interfere with compliance with study procedures. MAIN OUTCOMES MEASURES: Causative bacterial, viral or mixed pathogen(s) for pneumonia were determined using microbiological, molecular and serological tests from routinely collected specimens (blood, sputum and nasopharyngeal swabs). We applied a previously published algorithm (PEER-PePPeS rules) to determine the causative pathogen(s). RESULTS: 188 subjects were enrolled. Based on our algorithm, 48 (25.5%) had a bacterial infection, 31 (16.5%) had a viral infection, 76 (40.4%) had mixed bacterial and viral infections, and 33 (17.6%) were unable to be classified. The five most common causative pathogens identified were Haemophilus influenzae non-type B (N=73, 38.8%), respiratory syncytial virus (RSV) (N=51, 27.1%), Klebsiella pneumoniae (N=43, 22.9%), Streptococcus pneumoniae (N=29, 15.4%) and Influenza virus (N=25, 13.3%). RSV and influenza virus diagnoses were highly associated with Indonesia's rainy season (November-March). The PCR assays on induced sputum (IS) specimens captured most of the pathogens identified in this study. CONCLUSIONS: Our study found that H. influenzae non-type B and RSV were the most frequently identified pathogens causing hospitalised CAP among Indonesian children aged 2-59 months old. Our study also highlights the importance of PCR for diagnosis and by extension, appropriate use of antimicrobials. TRAIL REGISTRATION NUMBER: NCT03366454.


Subject(s)
Community-Acquired Infections , Haemophilus influenzae type b , Pneumonia , Respiratory Syncytial Virus, Human , Virus Diseases , Child , Child, Hospitalized , Child, Preschool , Community-Acquired Infections/microbiology , Humans , Indonesia/epidemiology , Infant , Pneumonia/etiology , Prospective Studies , Virus Diseases/complications
16.
Neuropharmacology ; 209: 109023, 2022 05 15.
Article in English | MEDLINE | ID: covidwho-1821424

ABSTRACT

Acute neurological alterations have been associated with SARS-CoV-2 infection. Additionally, it is becoming clear that coronavirus disease 2019 (COVID-19) survivors may experience long-term neurological abnormalities, including cognitive deficits and mood alterations. The mechanisms underlying acute and long-term impacts of COVID-19 in the brain are being actively investigated. Due to the heterogeneous manifestations of neurological outcomes, it is possible that different mechanisms operate following SARS-CoV-2 infection, which may include direct brain infection by SARS-CoV-2, mechanisms resulting from hyperinflammatory systemic disease, or a combination of both. Inflammation is a core feature of COVID-19, and both central and systemic inflammation are known to lead to acute and persistent neurological alterations in other diseases. Here, we review evidence indicating that COVID-19 is associated with neuroinflammation, along with blood-brain barrier dysfunction. Similar neuroinflammatory signatures have been associated with Alzheimer's disease and major depressive disorder. Current evidence demonstrates that patients with pre-existing cognitive and neuropsychiatric deficits show worse outcomes upon infection by SARS-CoV-2 and, conversely, COVID-19 survivors may be at increased risk of developing dementia and mood disorders. Considering the high prevalence of COVID-19 patients that recovered from infection in the world and the alarming projections for the prevalence of dementia and depression, investigation of possible molecular similarities between those diseases may shed light on mechanisms leading to long-term neurological abnormalities in COVID-19 survivors.


Subject(s)
COVID-19/complications , Cognitive Dysfunction/etiology , Depression/etiology , Neuroinflammatory Diseases/physiopathology , Affect/physiology , Blood-Brain Barrier/metabolism , COVID-19/physiopathology , Cognitive Dysfunction/physiopathology , Depression/physiopathology , Humans , Inflammation/physiopathology , SARS-CoV-2 , Virus Diseases/complications
18.
Front Immunol ; 13: 816619, 2022.
Article in English | MEDLINE | ID: covidwho-1809388

ABSTRACT

Infections during pregnancy can seriously damage fetal neurodevelopment by aberrantly activating the maternal immune system, directly impacting fetal neural cells. Increasing evidence suggests that these adverse impacts involve alterations in neural stem cell biology with long-term consequences for offspring, including neurodevelopmental disorders such as autism spectrum disorder, schizophrenia, and cognitive impairment. Here we review how maternal infection with viruses such as Influenza A, Cytomegalovirus, and Zika during pregnancy can affect the brain development of offspring by promoting the release of maternal pro-inflammatory cytokines, triggering neuroinflammation of the fetal brain, and/or directly infecting fetal neural cells. In addition, we review insights into how these infections impact human brain development from studies with animal models and brain organoids. Finally, we discuss how maternal infection with SARS-CoV-2 may have consequences for neurodevelopment of the offspring.


Subject(s)
Autism Spectrum Disorder , COVID-19 , Virus Diseases , Zika Virus Infection , Zika Virus , Animals , Autism Spectrum Disorder/etiology , Brain , Cytokines , Female , Pregnancy , SARS-CoV-2 , Virus Diseases/complications
19.
Br J Gen Pract ; 72(716): e217-e224, 2022 03.
Article in English | MEDLINE | ID: covidwho-1608429

ABSTRACT

BACKGROUND: There is little evidence about the relationship between aetiology, illness severity, and clinical course of respiratory tract infections (RTIs) in primary care. Understanding these associations would aid in the development of effective management strategies for these infections. AIM: To investigate whether clinical presentation and illness course differ between RTIs where a viral pathogen was detected and those where a potential bacterial pathogen was found. DESIGN AND SETTING: Post hoc analysis of data from a pragmatic randomised trial on the effects of oseltamivir in patients with flu-like illness in primary care (n = 3266) in 15 European countries. METHOD: Patient characteristics and their signs and symptoms of disease were registered at baseline. Nasopharyngeal (adults) or nasal and pharyngeal (children) swabs were taken for polymerase chain reaction analysis. Patients were followed up until 28 days after inclusion. Regression models and Kaplan-Meier curves were used to analyse the relationship between aetiology, clinical presentation at baseline, and course of disease including complications. RESULTS: Except for a less prominent congested nose (odds ratio [OR] 0.55, 95% confidence interval [CI] = 0.35 to 0.86) and acute cough (OR 0.42, 95% CI = 0.27 to 0.65) in patients with flu-like illness in whom a possible bacterial pathogen was isolated, there were no clear clinical differences in presentations between those with a possible bacterial aetiology compared with those with a viral aetiology. Also, course of disease and complications were not related to aetiology. CONCLUSION: Given current available microbiological tests and antimicrobial treatments, and outside pandemics such as COVID-19, microbiological testing in primary care patients with flu-like illness seems to have limited value. A wait-and-see policy in most of these patients with flu-like illness seems the best option.


Subject(s)
COVID-19 , Respiratory Tract Infections , Virus Diseases , Adult , Child , Humans , Pandemics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/microbiology , SARS-CoV-2 , Virus Diseases/complications , Virus Diseases/diagnosis , Virus Diseases/epidemiology
20.
Congenit Anom (Kyoto) ; 62(2): 54-67, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1594077

ABSTRACT

Intrauterine viruses can infect the decidua and placenta and cause adverse effects on the fetus during gestation. This review discusses the contribution of various viral infections to miscarriage and the molecular mechanisms by which viruses can cause devastating effects on healthy fetuses and induce miscarriage. Severe acute respiratory syndrome coronavirus 2 as newly emerged coronavirus was considered here, due to the concerns about its role during pregnancy and inducing miscarriage, as well. In this narrative review, an extensive literature search was conducted to find all studies investigating viral infections in miscarriage and their molecular mechanisms published over the past 20 years. The results of various studies investigating the roles of 20 viral infections in miscarriage are presented. Then, the mechanisms of pregnancy loss in viral infections were addressed, including alteration of trophoblast invasion and placental dysfunction, inducing excessive maternal immune response, and inducing apoptosis in the placental tissue. Viruses may cause pregnancy loss through different mechanisms and our knowledge about these mechanisms can be helpful for controlling or preventing viral infections and achieving a successful pregnancy.


Subject(s)
Abortion, Spontaneous , COVID-19 , Pregnancy Complications, Infectious , Virus Diseases , Female , Humans , Infectious Disease Transmission, Vertical , Placenta , Pregnancy , SARS-CoV-2 , Virus Diseases/complications
SELECTION OF CITATIONS
SEARCH DETAIL